

"Local Implementation of High Performance Housing" and "Does Size Matter?"

> Duncan Prahl , RA Innovation Programs Leader

Local Implementation of High Performance Housing

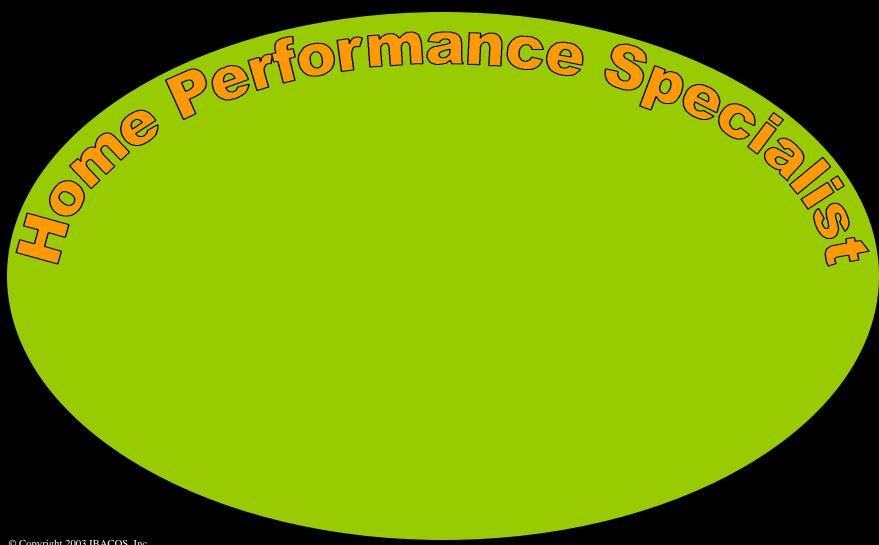
"Why do Europeans ship sugar cookies to the U.S. when they could just send the recipe?"

- 1 ton of CO₂ per 4000 miles flown¹
- CO₂ is more persistent at high altitude¹
- Average Energy Star Home® emissions savings = 1.86 tons per year²
- 1. http://traveltax.msu.edu/news/Stories/deutsche5.htm
- 2. http://www.cleanaircounts.org/Resource%20Package/Quant/eshome.pdf

Background

- The basic knowledge needed to build a high performance home is old news
 - Operation Breakthrough
 - Canadian R-2000
 - Building America for 10+ years
 - EEBA Guides
 - Energy Star Homes
 - Utility Programs
 - Green Building Programs
 - Home Energy Ratings

Technology vs. Process


Technology

- We have lots of really good "Stuff"
- Gaps still exist, but they are relatively small
- The bigger problem is the *Process* of putting the stuff together
 - Fragmented Industry
 - Continual downstream shifting of responsibility
 - Motives change as process proceeds
 - President of Company vs. Site supervisor

Hypothesis

- Local home performance specialist is needed to assist builders throughout the process to champion a predefined standard of quality within a builder's organization.
- This specialist could be an advanced home energy rater, who has additional training, professional design review support, and access to a unified design and documentation tool.
- Design review, tools, and liability coverage may be "value added" services that a HERS Provider can supply to raters.

Big Picture

© Copyright 2003 IBACOS, Inc. All rights reserved.

Ideal Process

- Map Builders process and local resources
- Performance assessment of current practice
- Set the standard of quality
- Identify the strategies to meet the standards
- Integrate strategies in pre-design phase (programming)
- Review integration during design process
- Design systems and perform design integration during design phase
- Generate documentation for building performance
- Train site supers and subcontractors
- Review construction
- Performance testing

Research

- Quality Control Strategies
- Costs
- High Performance Standards and Design Methodology
- Documentation
- Liability and Risk Management

2002 - 2003

First year in Colorado

- Several competent raters
- E-Star[™] Colorado HERS Provider
 - DOE 2 based rating tool
 - Quality assurance support
 - Training and Certification
- Established relationships with several high performance builders
- Established Green Building Program
- Possible mid to late 2003 tie-in with New England (VT, MA, CT)
 - Exemplary Green Building Program is starting there

Possible outcomes?

- Development of integrated building design, simulation, and visualization tool.
 - Structural
 - Loads & Ducts
 - Plumbing
 - Energy / rating
- A new model of quality control support for builders using Home Energy Raters
- Development of a new way of documenting buildings for high performance

And in Five Years....?

• The Home Energy Rating and Performance Engineered Systems Provider

- National or state based non- or for-profit company with a centralized internet-based software system in place to perform integrated design engineering of houses and quality control for builders
- Local field techs use the software and systems to provide design assistance and quality control, including performance testing
- A new form of design documentation has been adopted
- The Provider maintains QC over local techs, does design review, and may provide high level strategic consulting

Or ..?

 Architects will realize the level of service they could be providing and reinvent their profession to adopt an integrated approach to design, engineering, and testing and quality control support for builders undertaking residential projects

But I'm not betting the farm on this one

Does Size Matter?

- House sizes vary dramatically
- Occupancy is less variable
- Energy consumption is a function of both
- Green Building Programs beginning to say "Yes"

Trends in House Size and occupancy

	1987	2001
Average House Size	1,905	2,324
1,200 square feet or less	13%	6%
2,400 square feet or greater	21%	38%
Household size	2.66	2.62

Source: NAHB and U.S. Census Bureau

Is a Single Energy Standard Appropriate?

- Energy Star Homes® (HERS 86) is a typical threshold
- What is the impact of house size, occupancy, construction features, and energy consumption?

HERS Rating Score

Point score = 100 -((TnML / TRL) * 20)

where:

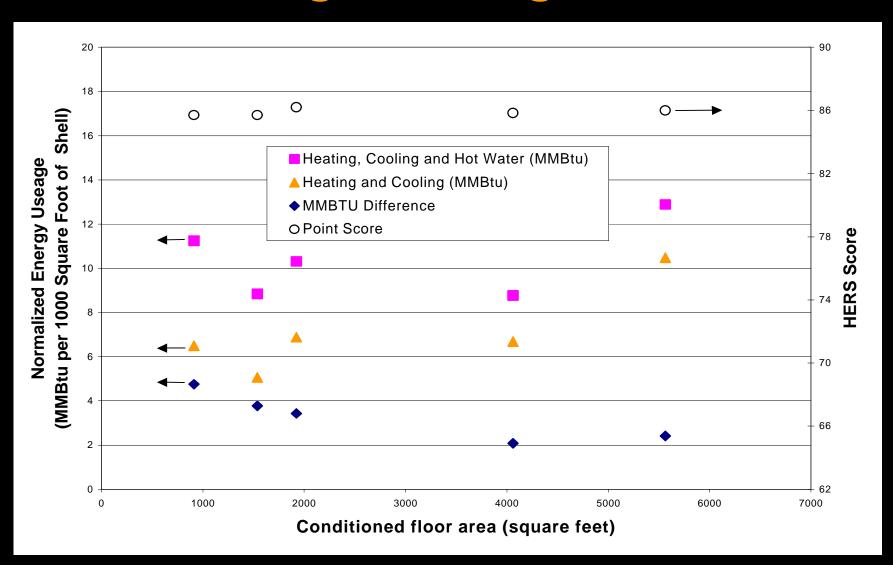
 $TnML = nMEUL_{HEAT} + nMEUL_{COOL} + nMEUL_{HW}$ (Total of all normalized Modified End Use Loads as calculated using equation 1).

 $TRL = REUL_{HEAT} + REUL_{COOL} + REUL_{HW}$ (Total of all Reference Home End Use Loads).

As house gets smaller for a given occupancy, hot water becomes a larger percentage of the load

Anal ysis Methodol ogy

- Model a variety of house sizes to meet Energy Star Homes® Performance (HERS 86)
- Normalize energy use by Surface Area and Occupancy
- Rate all houses with same energy characteristics as mid sized house at HERS 86
- Develop a Proposed Rating Score Curve that combines attributes of normalized energy for larger houses and same energy characteristics for smaller houses


Comparison of Energy Features to meet HERS 86

	House Size				
Component	912 SF	1527SF	1922 SF	4060SF	5564SF
Walls	R-19 +R-5	R-19 +R-5	R-19+R-5	R-13+R-4	R-13
Ceilings	R-38	R-38	R-38	R-38	R-30
Windows & Glass Doors	R-3.1 SHGC 0.34	R-3.1 SHGC 0.34	R-3.1 SHGC 0.34	R-2.6 SHGC 0.34	R-2.4 SHGC 0.55
Heating efficiency (AFUE)	93%	96%	93%	80%	80%
Air conditioning SEER	10	12	10	10	10
HERS Score	85.7	85.7	85.9	85.9	86.0

Doors: R- 2.2, Basement walls: R- 11 Air tightness: 0.2 ACH Nat

DHW: 40 gal, 0.56 EF Duct location: Inside envelope

Comparison Of Heating, Cooling and DHW

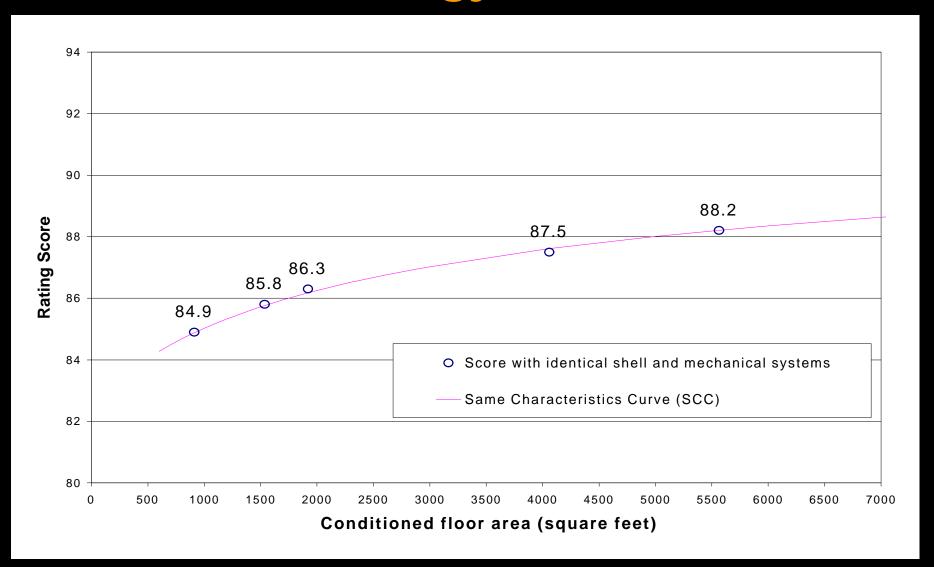
Normal izing Loads

- $TML_N = TnML / SOF$
- TML_{H&CN} = (nMEUL_{HEAT} + nMEUL_{COOL})/ SOF
- TML_{OccN} = TnML / Occ
- TML_{OCcH&C} = (nMEUL_{HEAT} + nMEUL_{COOL})/Occ

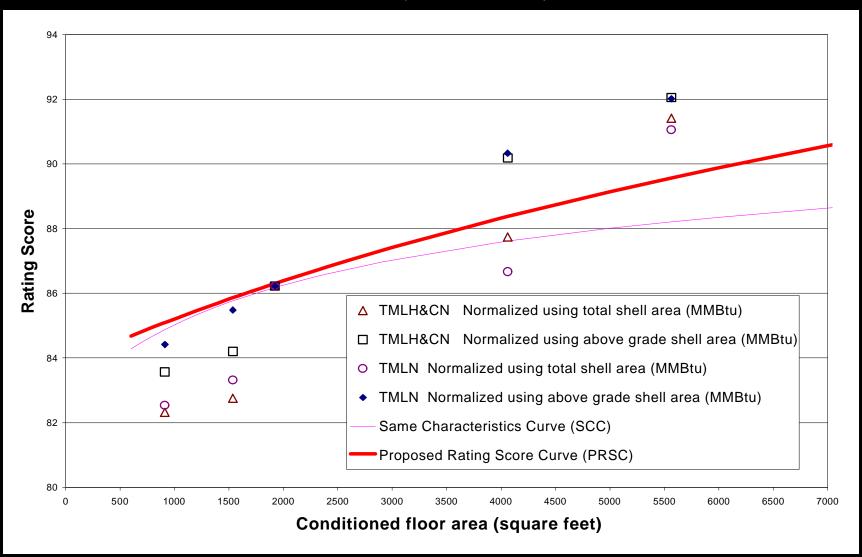
Where SOF = Shell area / occupancy

TML (in Occupant • MMBtu/1000 sf Total Shell Area)

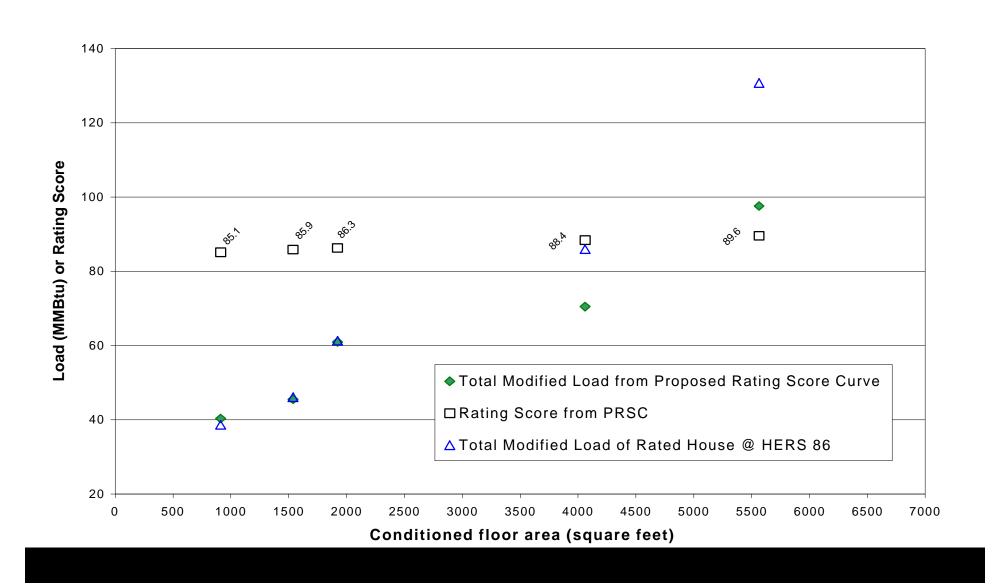
House Size (sf)	TML _N	TML _{H&CN}	Percent reduction in TML _{H&CN} compared to TML _N
912	32.6	19.7	39.5%
1537	36.0	21.1	41.6%
1922	41.7	27.9	32.9%
4060	45.7	32.7	28.4%
5564	64.2	51.7	19.5%


Projected Total Loads and Scores Normalized using Total Shell area (1922 sf house base)

House Size (sf)	PTL _{house}	PTL _{house} Rating Score	PTL _{houseH&C}	PTL _{houseH&C} Rating Score
912	47.25	82.5	47.85	82.3
1537	53.76	83.3	55.56	82.8
1922	61.32	86.2	61.32	86.2
4060	80.87	86.7	74.36	87.7
5564	83.67	91.1	80.32	91.4


Rate houses with the same energy characteristics

House Size 1922 sf						
Component			Component			
				Inside		
Walls	R-13 +R-4		Duct location	envelope		
			Heating efficiency			
Ceilings	R-38		(AFUE	93%		
	R-3.1,		Domestic water	30 gal,		
Windows & Glass Doors	SHGC 0.34		heating efficiency	0.58 EF		
				0.2 ACH		
Doors	2.2		Air tightness	Nat		
Basement walls above			Air Conditioning			
grade	R-11		SEER	12		
			Floors over			
Basement walls below			unconditioned			
grade	R-14		space	N/A		
HERS Score	86.3					


Rating Score for houses with the same energy characteristics

Ratings using TML shell and Proposed Rating Score Curve (PRSC)

Comparison of total modified Loads

Comparison of energy features for homes meeting the PRSC

	House Size				
Component	912 sf	1537 sf	1922 sf	4060 sf	5564 sf
Walls	R-13 +R-5	R-13 +R-3	R-13 + R-4	R-19 +R-5	R-20 +R-5
Ceilings	R-38	R-38	R-38	R-38	R-38
	R-3.1	R-3.1	R-3.1,	R-3.1	R-3.1
Windows & Glass Doors	SHGC 0.34	SHGC 0.34	SHGC 0.34	SHGC 0.34	SHGC 0.34
Doors	2.2	2.2	2.2	2.2	2.2
Basement walls above grade	R-11	R-11	R-11	R-11	R-11
Basement walls below grade	R-11	R-11	R-14	R-11	R-11
	Inside	Inside	Inside	Inside	Inside
Duct location	envelope	envelope	envelope	envelope	envelope
Heating efficiency (AFUE	80%	96%	93%	96%	96%
Domestic water heating	30 gal,	40 gal,	30 gal,	40 gal,	40 gal,
efficiency	0.58 EF	0.56 EF	0.58 EF	0.58 EF	0.84 EF
	0.2 ACH	0.2 ACH	0.2 ACH	0.2 ACH	0.2 ACH
Air tightness	Nat	Nat	Nat	Nat	Nat
Air Conditioning SEER	10	12	12	12	12
Floors over unconditioned					
space	N/A	N/A	N/A	19	N/A
HERS Score	85.1	85.9	86.3	88.4	89.6

Loads and scores associated with the PRSC

House Size (sf)	TML of HERS 86 House (MMBtu)	TML from PRSC (MMBtu)	Difference	Absolute Difference (MMBtu)	Original Rating Score	Rating Score from PRSC
912	38.64	40.33	-4%	-1.69	85.7	85.1
1537	46.08	45.55	1%	0.53	85.7	85.9
1922	61.32	60.98	1%	0.34	86.2	86.3
4060	85.92	70.49	22%	15.43	85.8	88.4
5564	130.68	97.54	34%	33.14	86	89.6

Factors Impacting the Method

Technical

- Climate zone and proportion of heating, cooling and DHW loads
- Characteristics of the HERS 86 home for the SCC
- Other performance issues

Policy

- What house size is used to set the HERS 86 level
- Production vs. custom
- Individual house score vs. fleet average

Policy vs. Technical

- What house size is used to set the HERS 86 level
- Production vs. custom
- Individual house score vs. fleet average

